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Finite-amplitude double-component convection due to different boundary conditions for two
compensating horizontal gradients
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Finite-amplitude convective steady flows that do not bifurcate from the respective conduction state are
discovered. They arise as the compensating horizontal gradients of two density-affecting components with
equal diffusivities but different boundary conditions are applied to the Boussinesq fluid at rest with and without
stable vertical stratification. These flows emanate from convection in a laterally heated stably stratified slot.
Their relevance to convective states in a horizontal slot with two vertical gradients, emphasizing universality of
the underlying type of convection, is discussed.

PACS numbels): 47.20.Bp, 47.15.Fe, 47.15.Rq, 47.20.Ky

Applications of double-component convection range froment boundary conditions at vertical no-slip walls. The diffu-
oceanographyl,2] and astrophysicf3,4] to crystal growth  sivities are set equal to extract the effect of boundary condi-
[5] and colloidal suspensioni§]. Convective flows are also tions, or they could be viewed as eddy coefficients. Both
commonly used to study transition to turbulence and nonlingradients are represented by the Rayleigh number Ra

ear patterm formation|7,8]. lffp.d uhnt(;I brecently_, | WO~ _ qa|AT|d kv=gp|3SIéx]d* kv. Here,X is the (dimen-
component convection in pure fluid had been mainly associ- . . . : o .
atedponly with the effect F())f different diffusion coef¥icients S|onab_hc.)r|zontal. coorc'imated. Is the width of the vertical
[9-11]. Generalizing the idea of Welandgt2], it has re-  Slot, AT is the (dimensional difference between the values
cently been suggested [ii3—15 that there is a fundamental Of temperaturethe fixed-value component, or the compo-
physical analogy between the effect of different boundarynent diffusing fasterat the sidewallsyS/ dx is the sidewalls-
conditions and that of different diffusivities. The componentprescribed dimensional horizontal derivative of solute con-
whose values are fixed at the boundaries would have a higheentration(the flux component, or the component diffusing
perturbation gradient than the one with the flux boundarysiowe, « is the coefficient of thermal expansiog,is the
conditions. The differential diffusion resulting from this dis- coefficient of the density variation due to the variation of
parity could thus be expected to trigger convection analosp|ute concentratiory is the gravitational acceleratiom,is
gously to the classical double-diffusion. In particular, thisine kinematic viscosity, anét= k1= ks is the diffusivity of

was demonstrated ifL5] for a laterally heated stably strati- poh components. The bar means that the respective variable
fied SIOt(LHSSS [16] is dimensional.

The primary convection pattern, whose formation is a pre- Using the same numerical approach agif], the two-

requisite of the transition to turbulence in the system, is USU: - nsional problem iust described was examined for the
ally expected to emanate from the respective linear instabil: P J

ity of the conduction base flow. This seems to have nc)tBoussmesq fluid by continuation of the background no-flow

. . a : . : solution in Ra. Despite the analogy it has with the classical
ap_plled only to binary-fluid convectidii7], if the separation double-diffusive configuration ifl18], however, no indica-
ratio is negative. The present work reports the manifestation

of pure-fluid convection in the form of finite-amplitude tion of the Jacobian sign change bging possible wasﬁ)und up
steady flows that do not bifurcate from the conduction statd® Re~2x1C°, at least for any vertical wavelengt=\/d
of a layer of Boussinesq fluid. These flows arise from the=6. Such finding was also independently confirmed by di-
effect of different boundary conditions as such conditions'€ct €xamination of the eigenvalues of the 8 matrix of the
maintain two compensating horizontal gradients of the comPoundary conditions imposed on the general solution of the
ponents with equal diffusivities in the fluid at restith and ~ Steady, marginal linear stability problem. NAG Fortran rou-
without stable vertical stratification These solutions are tines were used.
shown to be a continuation of the convective states in a LH- L€t a stable vertical solute stratification, characterized by
SSS. They are also expected to result from continuous tranthe Rayleigh number Ra g8|dS/dy[d*/ kv (y is the verti-
formation of the convective flows in a horizontal slot in cal coordinatg be also present. This probleffig. 1, ¢
[13,14). All convective steady states arising from the effect=0) is addressed herein. At first sight, its background state is
of boundary conditions in diverse configuratiofs3—15  nearly identical to that in the LHSSS [d5], where an op-
could thus be described by the single formulation. posing horizontal solute gradient arises due to vertical mo-
Let the diffusivities of the components be equal and thetion. However, the Jacobian in the above ranga @ind Ra
compensating horizontal gradients be maintained by differshowed no trend towards its sign change even fog &a
which double-component instability arises in a LHSSS
(~30000, for exampl¢l5]).
* Address for correspondence: 1 Yanosh Korchak Street, Apt. 6, Let ¢=0 (Fig. 1) and let a cut of such slot in Fig. 1 be
Netanya 42495, Israel. Email address: naftali@eng.tau.ac.il with the vertically periodic conditions\,=2, and Ra being
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FIG. 1. The problem in a vertical{=0) and inclined ¢>0) B B n=0.77
slot. 5p=p— pg is the variation of thénondimensionaldensity,p, . i . . > p=1
due to the variation$S and 8T of solute concentratio§ and tem- 0 100000 Ra 200000™\ HC

peraturelT = (T, + T,)/2+t with respect to their reference values, at
which the density io; T, and T, are the sidewall temperatures, FIG. 2. ¢=0. Schematic structures of steady flows far
o=gd% kv. Pr=v/k=6.7, ks= k1= «; k7 and g are the compo- [0,1]; Ra=30000 (Pr6.7, Le=1), A=2. The background
nent diffusivities. The fluid is of the Boussinesq type. states are depicted by the horizontal lines with arrdfes w=1,
this is the coordinate axis The solid lines stand for the stable
in the region of double-component instability of a solutions. The dashed lines stand for the flows being unstable to
LHSSS (say ~30000). For the sidewall boundary condi- either steady or both steady and oscillatory disturbances. The dotted
tions, however, let us introduce a more general formulatiorines stand for the solutions being unstable to oscillatory distur-
(S=—Ray+59): bances aloneB is the subcritical bifurcation standing for the steady
linear stability boundary; it moves to infinite Ra as— u.~0.8.®
$=0, t=+— is an abstract measure of the symmetric component of the steady
' 2 flows. L is the limit point standing for the finite-amplitude stability
boundary. The variation of its Ra, Rais overemphasized: fou
—=—pRa (x=0,1, O<y=\). (1) €[0,1], Ra monotonically increases within intervgdl5 652,
X 52 894. A1 andA2 are the unstable and stalfle steady distur-
Here w is the vorticity andy is the streamfunction. For bance$ branches associated with the limit point, respectively. HC
=1, (1) gives the present problertFig. 1, ¢=0). At u and H are Hopf bifurcationéTable ). At the unstable flows, Hopf
=0, however, boundary conditiori$) identifies a LHSSS. A  Pifurcations were not sought.
nearly compensating horizontal solute gradient is then
formed (outside the sidewall boundary laygtsy the vertical ~ points. This maintains the cellular motion. WhensR#, the
flow [16]. One can thus verify if a convective state bifurcat- vertical scale of such a motion is additionally limited. Such
ing from such flow aj.=0 persists aft =1, where the back- cell height is proportional to »=a|AT|/(8|dS/dy])
ground horizontal solute gradient is due to the sidewall flux.= Ra/Rad [Figs. 3a) and 3d)], as suggested if20]. It also
Such problem is described by boundary conditithsalong  remains of the order of; if the period allowsFig. 3(b)].
with the Eqgs.(1)—(4) and periodic conditiong9) in [15]. Another finding is oscillatory instability of the conduction
The basic result of this work is that, as+&+/«xs=1, the  state and brancA2, associated with respective Hopf bifur-
convective states arising at=0 and large enough Rdsay cations(Table ). Hopf bifurcation HC in Fig. 2 seems to
=10%) were successfully continued jm to u=1. As seen emanate from the directly unstable region of the background
from Fig. 2, the steady linear stability margin goes to infinity flow at ©<0.75[where linear time evolution of thégrow-
when u increases fromu=0 to u=~0.8. The finite- ing) perturbation also exhibited oscillatory behayjdnter-
amplitude stability boundary, however, barely changes, thusecting steady bifurcatioB at u e (0.75,0.77). HC atu
exhibiting a purely nonlinear manifestation of convection.=1 and Ra=0 suggests the possibility of an oscillatory
For ©>0.5, changes of the Jacobian sign were detecte¢hanifestation of the effect of boundary conditions in such
along the unstable branckl, indicating that additional so- problems. The present numerical formulation is only reflec-
lutions exist. These bifurcations do not restore stability oftionally symmetric, as the periodic conditiof® in [15] fix
any part of branctAl, and thus were not addressed in thisthe flow phase. With the translation symmetry of the conduc-
work. For this reason, they are not presented in Fig. 2. Théion state being also allowed for, such Hopf bifurcation as
scenario foru=1 in Fig. 2 is reminiscent of the one pro- HC could give rise to two oscillatory branchg®l]. This
posed in[19]. Such scenario also seems to arise in binarypossibility and its implications will be addressed separately.
fluid convection[17]. Let an infinite slot with two opposing across-slot gradi-
The convective states at=1 are illustrated in Fig. 3. As ents and the along-slot orientation of the gravity be such that
Ras=0 or small, such flows are reached by continuation inthe linear double-component steady instability arises in it.
Ras from a large enough Ra where they are obtained by This could be a LHSSS, for example. The convective steady
continuation inu from x=0. As seen from Fig. 3, the lateral state could not then be symmetric with respect to the sense of
temperature gradient in the vicinity of a sidewall towardsrotation of its cells. The cells whose sense of rotation creates
which the horizontal component of motion is directed islocally unstable along-slot solute perturbation stratification
higher than the gradient of solute concentration. Caused byould dominate those where such stratification is stable.
the different sidewall boundary conditions, this effect pro-Such bifurcation, if any, is thus prone to be subcritical
duces a horizontal density difference between two streamlingl5,16,18, due to the disparity between the stable finite-
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FIG. 3. ¢=0. Convective steady flows at
=1 (Pr=6.7, Le=1); A\=2. V¥: streamlinesS
isolines of (full) solute concentrationT: iso-
therms[t in (1)]. The solid ¢>0) and dashed
(#<0) streamlines are equally spaced within
(0,¥/may and (¥min,0) and represent the clockwise
and counterclockwise rotation, respectively;
Umin=INF(¥), Yma=sup@). The actual values
of t andSare equal to 1btimes the ones in the
figure.(a) Ras=30 000, Ra 120 394, brancih2,

Umax=1842, hin=0;

(b) Ras=30000, Ra

=60394, branchA2, ¢,=1084, #in=—10;
(c) Ras=30000, R&117981, branchAl (di-
rectly unstabl® ¢,2=550, ¥min=—93; (d) Rag
=15000, Ra 60000, branchA2, ,.=1531,
Umin=0; () Ras=0, Ra=32 394, branciA2 (un-
stable to oscillatory disturbances at this)Ra
Ymax=1230, ryin=0.

amplitude pattern and symmetric counter-rotating cells ini-by the(gradienj differential diffusion even as the initial per-

tially forming at the onset of linear instabilityln particular,
the unstable branch of the subcritical bifurcation thus permits
steady transition between these two pattermsother words,

turbation is infinitesimal.
In the present configuration, however, the across-slot di-
rection is perpendicular to the gravity. The feedback energy

finite-amplitude steady instability is more generic for suchfor further horizontal advance of a perturbed fluid particle
systems: its existence is a hecessary condition for the respeceuld come from the perturbation vorticity generated by the
cell-forming differential(lateral gradientdiffusion. This in-

The key element of the steady instability mechanism devolves along-slot dissipation. The along-slot component of
scribed in[14] is feedback between the vertical displacementperturbed motion is damped by dissipation in the geometry
of a fluid particle and disparity in the perturbed vertical dif- of [14] as well. In that geometry, however, this component is
fusion gradients. Such feedback exists due to the differemot part of the feedback between the across-slot displacement
boundary conditions. Parallel to the gravity, the across-sloand disparity in the perturbation gradients. Such feedback in
component of perturbed motion is thus directly maintaineda system with two opposing horizontal gradients, therefore,

tive linear instability.

TABLE I. ¢=0. Onset of oscillatory instability of the conduction sté@tC) and branchA2 (H) and the
values of Ra of limit poinL, Rg , as functions of Rg w=1, A=2. Ra; and Rg, are the maximal stable
and minimal unstable values of Ra, respectively, at which the stability of the flows was exafjrexttf ,,
are the respective frequenciésverse periodsof the most unstable mode, nondimensionalized witt?
(the inverse time scaleThe frequencies were calculated from the power spectrum densities of the linear
evolutions resulting from the initial perturbation proportional to the whole steady solution (&dtbrl024
time stepsd7=0.05 for HC ands7=0.1 for H).

Ra/1000 (Pr=6.7, Le=1)

0 5 10 15 20 25 30
Ra, HC 17 46 79 113 151 191 223
1000 H 8.5 31 50 68 86 104 121
Ra,, HC 18 47 80 114 152 192 224
1000 H 9 32 51 69 87 105 122
fo HC 0.64 1.02 1.27 1.46 1.64 1.80 2.19

H 0.30 0.75 0.90 0.99 1.05 1.11 1.15
fun HC 0.64 1.04 1.29 1.48 1.66 1.80 2.19

H 0.32 0.77 0.91 0.99 1.05 111 1.16
Ra 6427 17603 26147 33628 40462 46847 52894




RAPID COMMUNICATIONS

R7594 N. TSITVERBLIT PRE 62

is not as efficient as ifl4]. Thus a small-amplitude steady  With ¢ changing from=/2 to 0, therefore, the convective
perturbation is generally less likely to develop this type ofsteady pattern of reflectionally symmetric counter-rotating
feedback in such a system than in the geometrj/l4. cells in the horizontal slot would have to transform into the
At u=0, the specific conditions for development of the one where the clockwise-rotating cells are dominant. As sug-
infinitesimal steady perturbation are apparently more favorgested above, this growing cell asymmetry should eventually
able than in the present problem. In particular, the vanishingender the instability subcritical. With the across-sia}
background horizontal solute gradient near the sidewalls &{omponent of the gravity further decreasinggaapproaches
n=0 reduces the across-slot scale of this component cony (the present problejnit would also be natural that the

pared to that au=1. Since this scale specifies the relative |j,ear steady instabilitycaused by this componéntanish.
solute perturbation amplitude at the onset, such adjustment o present convective flow®ig. 3 could thus corre-

of parameters could prove to be critical for development ofSpond just to different values af and Ra of convective

the infinitesimal perturbation. Indeed, let the relative solute ; : " o
. . A L f Ily f h -l I
perturbation amplitude in Fig.(8 of [15] increase. Analo- states bifurcating supercritically from the no-flow solution in

gous o the effec of ennancement of the background acrosger 1SR A VR SR BLE T (s R
slot solute scale with growing, this tends to decrease the 9 9

horizontal density-perturbation contrast at a perturbatiorjfh_e presence of stgple vertical stratificatiat), for the_no- .
streamline. At sufficiently largg., such contrast would thus slip boundary conditions are transformable by continuation

fail to maintain the illustrated type of infinitesimal perturba- INt the stress-free ones [].) Trial computations, where
tion. was the continuation parameter andsR#®, indicated that

Let us consider an inclined slot in Fig. 1 0) and let  this should indeed be the case. The detailed analysis of the

Ras=0. Foro= 7/2, this is just a particular case of the prob- corresponding transformations will be reported separately.
lem in[14] with no-slip boundaries. As mentioned above, the ~Exhibiting an essentially nonlinear onset of pure-fluid
convective mechanism in the latter configuration causes linconvection, the discovered flows could thus also permit con-
ear steady instability, whereas the instability is of the finite-tinuous transformatiofwith varying u, Ras, ande, in par-
amplitude nature in the present problem. Ashanges from ticular) between any two convective steady states arising
7/2 to 0, the projection of the gravity on tlig) axis perpen- from the effect of boundary conditions in diverse configura-
dicular to the plates, responsible for the linear instabilitytions. This emphasizes the universal nature of the convection
mechanism discussed [14], decreases. At the same time, resulting from the disparity between diffusion gradients in
the emerging along-sldl) component of the gravity is en- perturbed state of a double-component fluid system with dif-
hanced. As already discussed, the latter component intrGerent boundary conditions.

duces asymmetry between the senses of rotation of the

counter-rotating convection cells.
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